Ministério do Planejamento, Orçamento e Gestão Instituto Brasileiro de Geografia e Estatística – IBGE Diretoria de Geociências Coordenação de Geodésia

MONITORAMENTO DA VARIAÇÃO DAS COORDENADAS DE ESTAÇÕES DA REDE SIRGAS 2003 a 2010

Apresentação

esde agosto de 2008, o IBGE, através da Coordenação de Geodésia da Diretoria de Geociências, atua como um dos Centros de Processamento SIRGAS. Esta atividade é realizada no âmbito de uma cooperação internacional entre países da América Latina e do Caribe com o objetivo de promover a manutenção do sistema de referência geocêntrico, denominado de SIRGAS, para a região. Este relatório apresenta os resultados referentes à determinação de coordenadas geodésicas de um conjunto específico de 130 estações GNSS contínuas pertencentes à rede SIRGAS-CON, no período de 2003 a 2010.

Luiz Paulo Souto Fortes Diretoria de Geociência

Sumário

1.NTRODUÇÃO	.7
2.CENTRO DE PROCESSAMENTO SIRGAS – IBGE1	0
3.CARACTERÍSTICAS DAS ESTAÇÕES SIRGAS1	13
4.METODOLOGIA APLICADA1	14
5.SERIE TEMPORAL DAS ESTAÇÕES1	17
ANEXOS	
1 – DESCRIÇÃO DAS ESTAÇOES SIRGAS2)1
2 – SÉRIE TEMPORAL DAS ESTAÇÕES2	

1. INTRODUÇÃO

Desde fevereiro de 2005, o Sistema de Referência Geocêntrico para as Américas – SIRGAS, na sua realização 2000 (SIRGAS2000), época 2000.4, tornou-se oficialmente o novo sistema de referência geodésico para o Brasil, conforme publicado na Resolução do Presidente do IBGE, R.PR-1/2005. Trata-se de um sistema de referência cuja estrutura fundamental é baseada em determinações por GNSS (*Global Navigation Satellite System*); técnica espacial de posicionamento com a qual obtêm coordenadas de precisão milimétrica. Em decorrência da precisão obtida, o acompanhamento temporal das coordenadas passou a ser um fator importante para a manutenção do SIRGAS2000. Fatores como terremotos, movimento de placas litosféricas, subsidência de solo, influenciam na posição de cada uma das estações que materializam esse sistema, e, portanto, devem ser monitoradas.

Define-se por redes ativas GNSS, o conjunto de estações geodésicas estabelecidas em locais estáveis da superfície terrestre, materializadas por uma estrutura rígida, onde são instalados receptores GNSS de dupla-freqüência, os quais coletam dados dos satélites continuamente. A implantação deste novo conceito de redes geodésicas possibilitou a avaliação sistemática das variações ocorridas na materialização de um sistema de referência geodésico ao longo do tempo e conseqüentemente o aprimoramento dos modelos de velocidades.

Desde a criação do Projeto SIRGAS, no ano 1993, a principal proposta era estabelecer um sistema de referência único para a América do Sul. Dentro desta proposta, foram realizadas duas campanhas GPS, uma no ano 1995 e outra em 2000. A materialização SIRGAS95, com 58 estações, contou com a participação da maioria dos países sul americano. A segunda materialização, SIRGAS2000, com 184 estações, contou com a participação de quase todos os países do continente americano e região do Caribe. Considerando que a maioria das estações participantes destas duas realizações eram "passivas" e em decorrência do crescente número de estações ativas no continente, foi criada uma nova materialização, denominada de SIRGAS-CON (Rede SIRGAS de Operação Contínua), caracterizando-se por uma rede de estações GNSS de operação contínua, distribuídas na América do Sul, Central e Caribe, conforme apresentada na Figura 1. Essa rede auxilia na definição e materialização do sistema. Maiores informações podem ser encontrados em www.sirgas.org..

Os Centros Locais de Processamento SIRGAS foram instituídos com a finalidade de determinar de forma sistemática, as coordenadas das estações pertencentes à rede SIRGAS-CON, assim como outras informações referente à rede, seguindo critérios pré-estabelecidos e padronizados, a fim de dar suporte à manutenção do SIRGAS. Essas informações são utilizadas na avaliação do SIRGAS, e para uma futura realização desse sistema. Atualmente existem oito Centros Locais de Processamento: IBGE através da Coordenação de Geodésia (Brasil); Instituto Geográfico Agustín Codazzi - IGAC (Colômbia), Instituto de Geodésia y Geodinâmica de la Universidad Nacional del Cuyo, IGG-CIMA (Argentina), Instituto Geográfico Militar de Ecuador - IGM (Equador), Servicio Geográfico Militar del Uruguayi - SGM (Uruguai), Laboratorio de Geodesia Física y Satelital, Universidad del Zulia - LGFS (Venezuela), Instituto Nacional de Estadística y Geografia - INEGI (México) e Instituto Geográfico Nacional - IGN (Argentina). O Deutsches Geodätisches ForschungInstitut - DGFI (Alemanha) é responsável pelo processamento da rede "core" do SIRGAS-CON. Além da responsabilidade de Centro Local de Processamento, o IBGE e o DGFI também são Centro de Combinação das soluções disponibilizadas semanalmente pelos oito Centros de Processamento e avaliam a qualidade e pontualidade das soluções. O DGFI é o responsável por disponibilizar oficialmente a solução semanal da Rede SIRGAS-CON ao IGS (International GNSS Service), denominada de RNAAC-SIR.

Figura 01: Rede SIRGAS-CON – maio de 2011 (www.sirgas.org)

2. CENTRO DE PROCESSAMENTO SIRGAS – IBGE

O Centro de Processamento SIRGAS – IBGE apesar de ter iniciado oficialmente suas atividades em 2008, tem resultados do processamento dos dados GNSS coletados desde janeiro de 2003 (semana GPS 1199). As atividades foram iniciadas com o propósito de avaliação da qualidade dos dados e acompanhamento temporal das coordenadas das estações da Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS - RBMC, a fim de promover a manutenção do sistema de referência SIRGAS2000. Em 2008, o IBGE tornou-se centro de processamento oficial da Rede Regional GNSS de estações de operação contínua, SIRGAS-CON, apoiando as atividades do Grupo de Trabalho I - GTI (Rede de Referência) do SIRGAS.

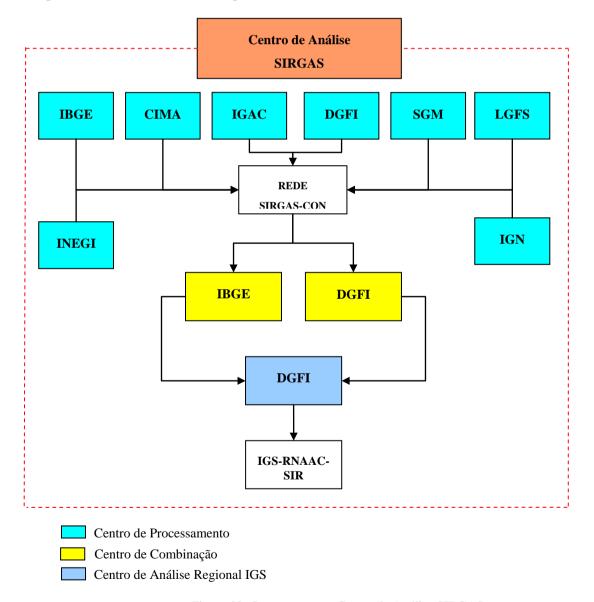


Figura 02: Organograma – Centro de Análise SIRGAS

Com o propósito de se buscar um peso igual para cada estação na solução final combinada, elas foram distribuídas de forma homogênea em três sub-redes, sendo designado a cada Centro Local de Processamento responsabilidade do processamento de uma sub-rede. O IBGE é responsável pelo processamento dos dados das estações que ocupam a parte central da rede SIRGAS-CON, as quais estão distribuídas nos seguintes países: Argentina, Bolívia, Brasil, Chile, Equador, Guiana, Peru, Suriname, Venezuela e Uruguai. São também processadas estações IGS localizadas na América do Sul, Central e Antártica. As soluções semanais calculadas por cada centro são "fracamente injuncionadas" e disponibilizadas, em formato SINEX (Solution (Software/technique INdependent Exchange Format) aos Centros de Combinações, os quais são responsáveis pela combinação das soluções das sub-redes. Por sua vez, as soluções combinadas semanais são injuncionadas nas soluções semanais da Rede global IGS (IGSyyPwwww.SNX), compatibilizando assim a soluções final com a realização IGS05.

Desde o início das atividades do Centro de Processamento SIRGAS – IBGE, o número de estações GNSS pertencentes à rede SIRGAS-CON e processadas pelo IBGE, vêm aumentando de forma significativa. Apesar do aumento, algumas estações deixaram de ser utilizadas por terem sido desativadas, não havendo mais a disponibilidade dos dados. A figura 03 apresenta as estações processadas pelo IBGE, desde o início oficial das atividades como centro de processamento, em agosto de 2008 (semana GPS 1495). Atualmente (maio de 2010) são processadas cerca de 130 estações.

Figura 03 – Estações processadas pelo IBGE.

3. CARACTERÍSTICAS DAS ESTAÇÕES SIRGAS

As estações pertencentes à rede SIRGAS-CON são materializadas em locais estáveis providos de rede elétrica e lógica Não existe uma configuração física padrão para a monumentalização das estações, mas todas devem possuir estruturas rígidas (metálicas ou de concreto) e um dispositivo de centragem forçada no seu topo onde deve ser instalada a antena do receptor. As estações são equipadas com receptores de dupla freqüência e a maioria dos equipamentos coleta dados GNSS (GPS e GLONASS), restando ainda alguns que coletam apenas dados GPS. Maiores informações sobre as características das estações SIRGAS podem ser visualizadas em http://www.sirgas.org/.

Figura 04 – Estações ESQU (Argentina) à esq. e BOMJ (Brasil) à dir.

O Anexo 01 apresenta a relação de todas as estações utilizadas no processamento pelo Centro de Processamento SIRGAS - IBGE, além das informações relativas ao receptor e antena, e o local onde elas se encontram.

4. METODOLOGIA APLICADA NO PROCESSAMENTO

O processamento dos dados GNSS é realizado com o software Bernese, versão 5.0 (Dach, R. et al.,2006) no modo automático através do módulo BPE (Bernese Processing Engine). Atualmente ele é considerado um dos melhores softwares científicos de processamento de dados GNSS, visando, contudo, atender aos requisitos dos mais variados tipos de usuários, os quais buscam acima de tudo, resultados de alta precisão tais como: órbitas, parâmetros de orientação terrestres, parâmetros atmosféricos, coordenadas e velocidades, entre outros.

As etapas do processamento de dados GNSS são: coleta e organização dos dados, processamento dos dados diários e combinação das soluções diárias de forma a se obter as soluções semanais. Os dados de cada estação são organizados em arquivos de 24 horas de rastreio e disponibilizados no formato RINEX (*Receiver INdependent Exchange Format*). Cada estação possui identificação única, sendo um controle importante para a etapa da combinação semanal. Além do código identificador da estação, no cabeçalho do arquivo RINEX são informados e verificados pelo software de processamento, o tipo de receptor e antena, conforme o padrão adotado pelo IGS e a altura da antena, devendo estar referida ao ARP (Ponto de Referência da Antena).

Os dados são processados com órbitas IGS precisas e seus correspondentes parâmetros de Orientação Terrestre (Earth Orientation Parameters - EOP). O software Bernese usa as efemérides DE405 JPL e modelo de maré terrestre CSR3.0 visando considerar a ação dos deslocamentos locais devido as marés da Terra sólida. Os coeficientes de carga oceânica a serem utilizados são baseados no modelo FES2004. Os valores correspondentes do modelo FES2004 são fornecidos por M.S. Bos e H.-G. Scherneck em http://www.oso.chalmers.se/~loading/. Os valores da variação absoluta do centro de fase dos diferentes tipos de antenas são obtidos em igs05.atx, atual modelo IGS. As combinações de antena com o radome devem ser consideradas no processamento. O ângulo de elevação é de 3 graus e o intervalo de coleta dos dados é de 30 segundos. As observáveis do código só são usadas no processamento para a estimativa do erro do relógio do receptor. Considerando que o processamento é realizado no modo relativo estático, as simples diferenças de fase são criadas para as etapas subseqüentes de estimativa dos parâmetros. As correções de atraso ou adiantamento dos sinais devido a sua propagação na troposfera e ionosfera são estimadas a priori através de modelos matemáticos. A fim de modelar o atraso troposférico, o modelo a priori de Niell considerando apenas a parte seca é aplicado.

Estima-se também os parâmetros da troposfera local, ou seja, parâmetros troposféricos específicos para cada estação, e estas correções são aplicadas ao modelo troposférico escolhido *a priori*. Os parâmetros troposféricos (componente úmida) estimados em cada estação, e que representam linearmente o atraso no zênite, bem como os gradientes são estimados a cada 2 horas, usando a função de mapeamento de Niell, considerando ± 5 m como sigma *a priori* para o primeiro valor absoluto e ± 5 cm para os onze valores relativos seguintes.

As ambigüidades são resolvidas em cada linha de base aplicando-se a estratégia QIF – Quase Ionosphere Free independente do comprimento da linha de base e apenas as observações de fase são usadas com essa finalidade.

Após a conclusão do processamento dos dados nos sete dias da semana, a última etapa consiste na combinação das sete soluções diárias onde todas as coordenadas das estações são injuncionadas em ± 1 m. Os valores a priori das estações são as coordenadas determinadas pelo IGS05. Os arquivos SINEX da solução semanal contêm as coordenadas, a respectiva matriz variância-covariância, além de algumas informações estatísticas, tais como número de observações, número de incógnitas, variância a unidade de peso à posteriori. As soluções semanais são disponibilizadas aos centros de combinação, os quais realizarão a combinação das soluções de todos os centros de processamento, gerando assim um resultado único para a Rede SIRGAS-CON. As soluções semanais calculadas pelo IBGE são disponibilizadas no seguinte endereço: ftp://geoftp.ibge.gov.br/SIRGAS/, ou através do portal do IBGE na Internet:

http://www.ibge.gov.br/home/geociencias/geodesia/centros apres.shtm

As principais características do processamento realizado pelo IBGE com o *software* Bernese 5.0 são listadas no Quadro 01.

O processamento das observações é realizado duas semanas após a sua coleta, considerando que as órbitas precisas IGS só ficam disponíveis 14 dias após a data correspondente. O resultado gerado por cada um dos centros de processamentos é disponibilizado para o DGFI dentro de um intervalo de três semanas após as observações terem sido coletadas.

Quadro 01 - Principais características do processamento

Observações	Dupla Diferença de fase			
Software	Bernese 5.0 (modo BPE)			
Taxa de coleta	30 segundos			
Ângulo de Elevação	03°			
Estratégia de Linha de Base	SHORTEST (as menores linhas entre as estações são formadas)			
Órbita/EOP	final IGS - IGS05			
	EOP das soluções semanais IGS – IGS05			
Modelo de Troposfera a priori	Niell componente seca			
Troposfera local	O atraso troposférico no zênite é estimado a cada 2 horas,. São estimadas 12 correções diárias por estação.			
	As correções dos atrasos zenitais utilizando a função de mapeamento Niell (componente úmida).			
Ambigüidades	Estratégia QIF com Modelos Globais da Ionosfera - GIM disponibilizados pelo Centro de Determinação de Órbita da Europa - CODE			
Modelo de Carga Oceânica	FES2004			
Variação de Centro de Fase	Absoluto (IGS_05)			
Coordenadas e Velocidades	IGS05_R			
Soluções Diárias	Todas estações são injuncionadas em $\sigma = \pm 1m$			
	Arquivos de saída: SINEX			
	Mapas Troposféricos			
Soluções Semanais	Todas estações são injuncionadas em σ=±1m			
	Arquivos de saída: SINEX			

As informações das estações utilizadas no processamento tais como tipo de receptor e antena, *domes number*, altura da antena, entre outras, são obtidos através dos *logfile* disponíveis no site do DGFI e IGS:

ftp://ftp.sirgas.org/pub/gps/DGF/station/log/ ftp://igscb.jpl.nasa.gov/pub/station/log/

5. SERIE TEMPORAL DAS ESTAÇÕES

As séries temporais de cada estação da Rede SIRGAS-CON são geradas através dos resultados obtidos nas soluções semanais do centro de processamento. Através destas séries, é possível detectar problemas que possam ter ocorrido em alguma estação, avaliar o comportamento geodinâmico local, determinar a velocidade das estações devido ao movimento das placas litosféricas. As séries temporais de todas as estações da rede SIRGAS-CON processadas pelo IBGE até abril de 2011 são apresentadas no anexo 2.

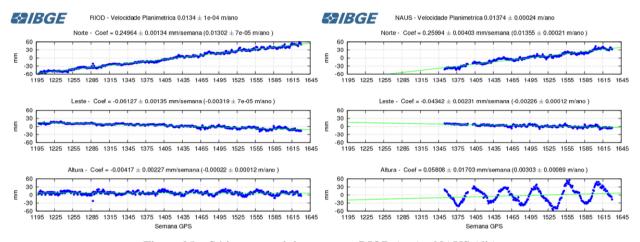


Figura 05 - Série temporal das estações RIOD (esq) e NAUS (dir)

A figura 05 apresenta o comportamento temporal das estações RIOD e NAUS localizadas no Rio de Janeiro e Manaus respectivamente. Observem que tanto a componente norte, quanto a leste apresentam o mesmo comportamento (direção) para ambas as estações. Esse movimento é em grande parte, devido ao deslocamento das placas litosféricas, sendo que ambas estão sobre a placa Sulamericana. Entretanto, a componente altimétrica por ser altamente dependente de condições locais, apresentam comportamentos diferentes. A componente altimétrica para a estação NAUS vem apresentando um comportamento sazonal de amplitude de aproximadamente 10 cm, o qual está diretamente relacionado com o período de cheia e vazante do Rio Negro. Isso é verificado quando comparamos os resultados determinados pela estação NAUS, com os resultados de linígrafos pertencentes à Agência Nacional de Águas – ANA, dispostos às margens do Rio Negro.

Com a determinação das séries temporais é possível calcular o vetor velocidade das estações da rede SIRGAS-CON, conforme apresentado na figura 06. Nota-se que o comportamento para as estações localizadas no Brasil apresenta concordância entre si, o que não ocorre com as estações localizadas nos Andes, as quais sofrem uma grande influência da placa

litosférica Nazca. A velocidade com que as estações brasileiras se deslocam é de aproximadamente 1,2 cm/ano, enquanto que para a estação CONZ localizada no Chile, esse deslocamento é de aproximadamente 3,8 cm/ano.

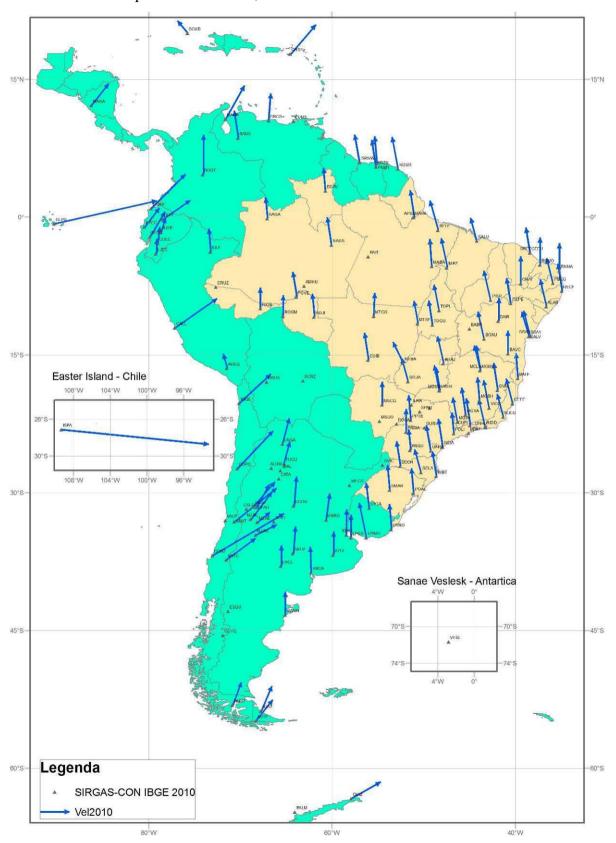


Figura 06 – Velocidade das estações determinadas pelo IBGE.

6. ATIVIDADES DO CENTRO DE COMBINAÇÃO SIRGAS – IBGE

Além de ser um Centro de Processamento da Rede SIRGAS-CON, o IBGE também vem trabalhando para ser um Centro de Combinação SIRGAS-CON. O objetivo do centro de combinação é analisar as soluções semanais geradas pelos centros de processamento, observando assim possíveis discrepâncias e inconsistências entre as soluções produzidas pelos centros locais de processamento, tais como, alterações dos equipamentos das estações, ausência de estações em determinado processamento. A combinação é realizada semanalmente, uma semana após a conclusão do processamento, e os produtos gerados são: relatório semanal, um arquivo no formato SINEX da solução livre, ou seja, "fracamente injuncionada", um arquivo no formato SINEX da solução injuncionada e um sumário da repetibilidade das soluções de cada estação. Estas informações encontram-se no portal do IBGE na Internet:

http://www.ibge.gov.br/home/geociencias/geodesia/centros_apres.shtm

• Relatórios:

ftp://ftp.geoftp.ibge.gov.br/SIRGAS/Relatórios/Combinação/

Soluções semanais fixas:

ftp://ftp.geoftp.ibge.gov.br/SIRGAS/Resultados/Combinação/

7. REFERÊNCIAS

Dach, R., U. Hugentobler, P. Fridez, M. Meindl, Eds. (2007). Bernese GPS Software Version 5.0 - Documentation. Astronomical Institute, University of Berne, January, 640 Pp.

International Terrestrial Reference Frame – ITRF2005, http://itrf.ensg.ign.fr/ITRF_solutions/2005/ITRF2005.php

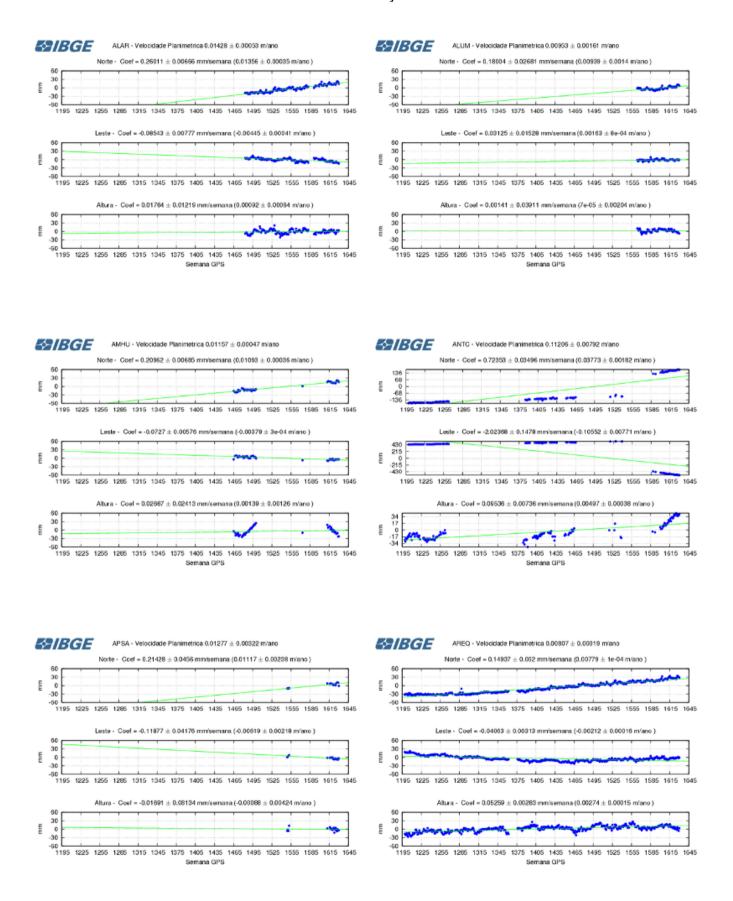
International GNSS Service – IGS, http://igscb.jpl.nasa.gov/.

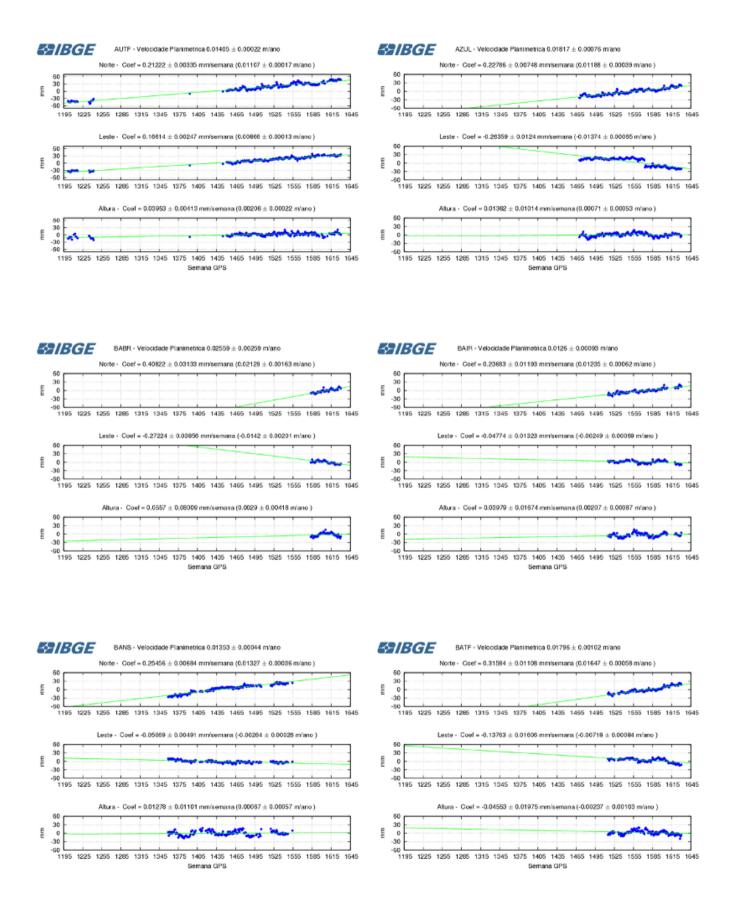
SIRGAS, 2010, Sistema de Referência Geocêntrico para as Américas, http://www.sirgas.org/index.php?id=15&L=2.

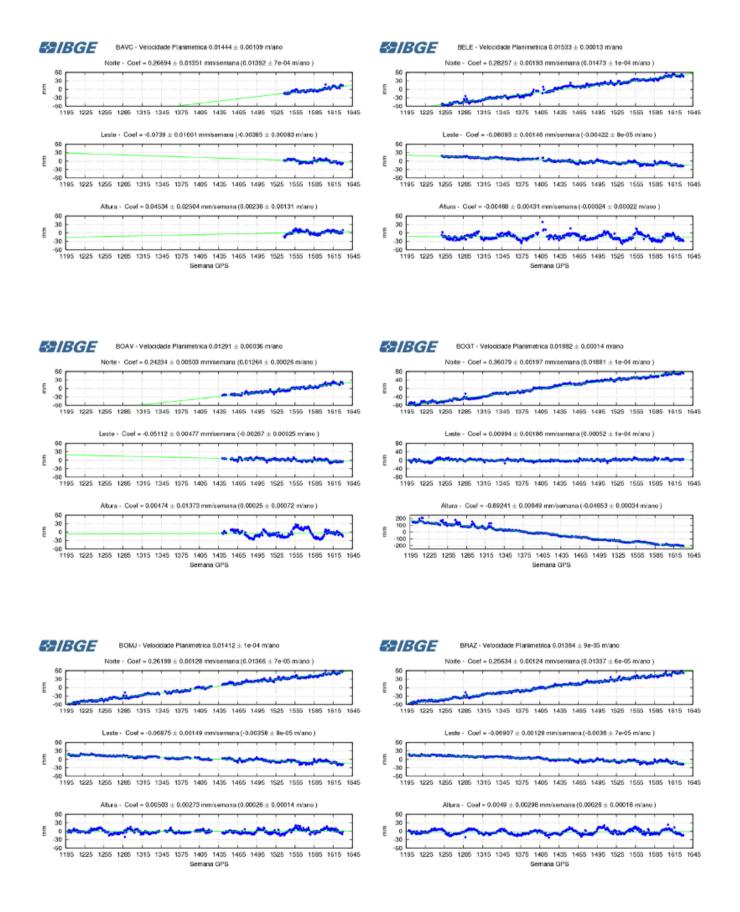
ANEXO 01 – DESCRIÇÃO DAS ESTAÇOES SIRGAS

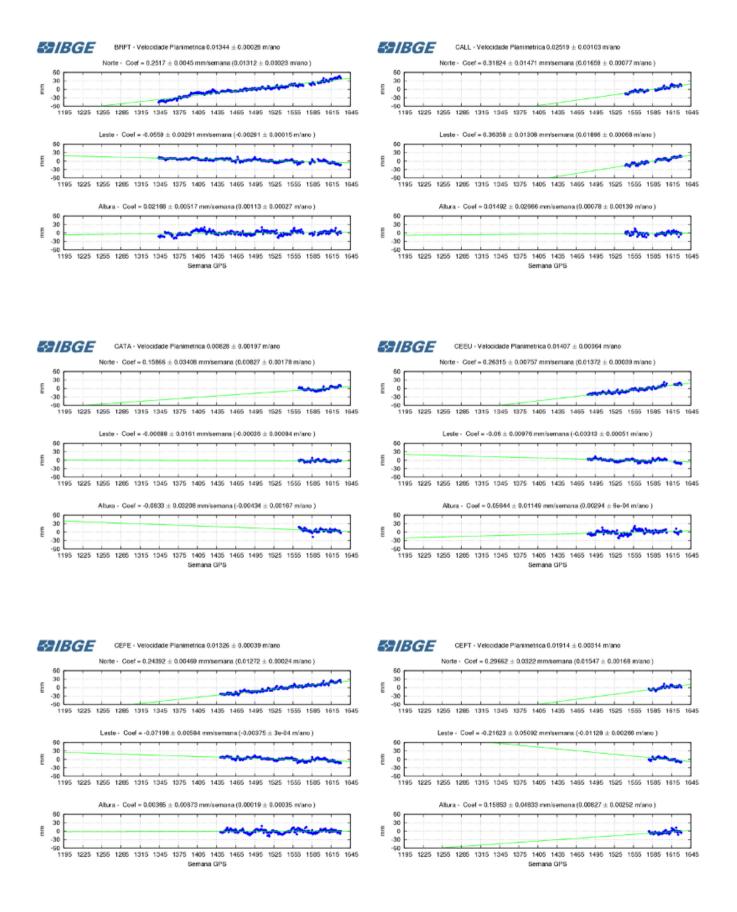
Tabela 01 – Descrição das estações SIRGAS processadas pelo IBGE

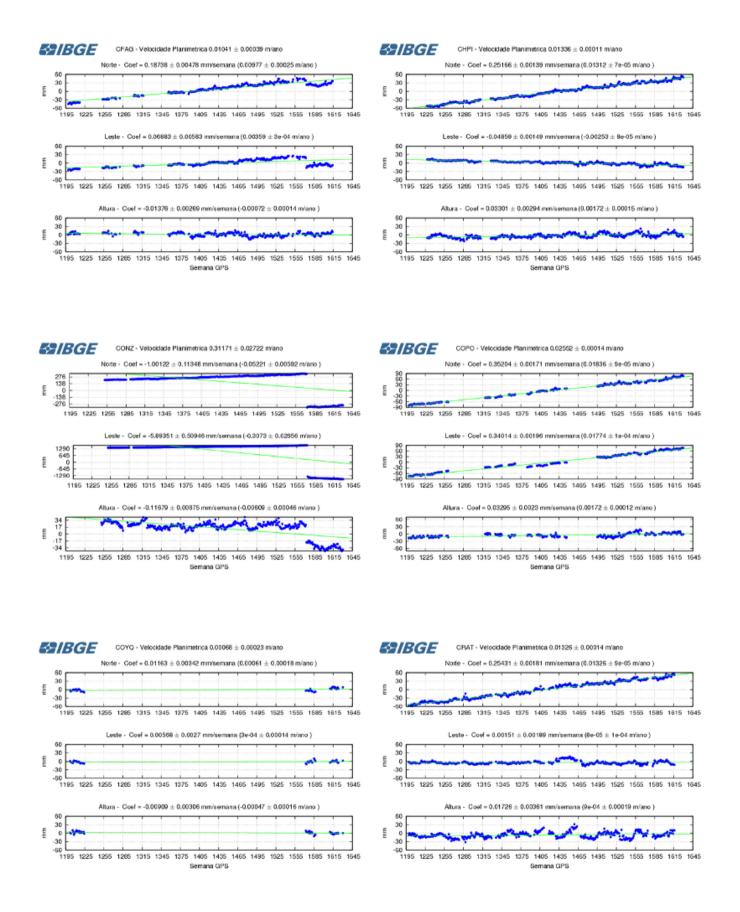
	DOMES	scrição das estações SIRGAS	1		ALTURA		
EST	NUMBER	RECEPTOR	ANTENA		(m)	CIDADE	PAÍS
					. ,		
ALAR	41653M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0010	Arapiraca	Brazil
ALUM	41535M001	TRIMBLE NETR5	TRM55971.00	TZGD	0.0000	Mina Alumbrera	Argentina
AMHU	41646M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Humaita	Brazil
ANTC	41713S001	TRIMBLE NETRS	ASH700936D_M	SNOW	0.0000	Los Angeles	Chile
AREQ	42202M005	ASHTECH UZ-12	AOAD/M_T	JPLA	0.0610	Arequipa	Peru
AUTF	41515S001	TRIMBLE NETRS	ASH700936D_M	SNOW	0.0000	Ushuaia	Argentina
AZUL	41529M001	TRIMBLE NETR5	TRM55971.00	TZGD	0.0000	Azul	Argentina
BABR	41684M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0090	Barreiras	Brazil
BAIR	41665M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Irece	Brazil
BANS	42403M001	TRIMBLE 5700	TRM29659.00	NONE	0.0000	Barinas	Venezuela
BATF	41666M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0100	Teixeira de Freitas	Brazil
BAVC	41669M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Vitória da	Brazil
						Conquista	
BELE	41622M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Belem	Brazil
BOAV	41636M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Boa Vista	Brazil
BOGT	41901M001	ASHTECH UZ-12	ASH701945E_M	NONE	0.0610	Bogota	Colombia
BOMJ	41612M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Bom Jesus da Lapa	Brazil
BRAZ	41606M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Brasilia	Brazil
BRFT	41602M002	LEICA GRX1200PRO	LEIAT504	NONE	0.0083	Eusebio	Brazil
CALL	42205M001	LEICA GRX1200GGPRO	LEIAT504GG	LEIS	0.1100	El Callao	Peru
CATA	41534M001	TRIMBLE NETR5	TRM55971.00	TZGD	0.0000	San Fernando de Catamarca	Argentina
CEEU	41602M003	LEICA GRX1200+GNSS	LEIAX1203+GNSS	NONE	0.0020	Euzebio	Brazil
CEFE	41637M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Vitoria	Brazil
CEFT	41682M001	TRIMBLE 4000SSI	TRM29659.00	NONE	0.0080	Fortaleza	Brazil
CFAG	41517S001	TRIMBLE NETRS	ASH700936D_M	NONE	0.0000	Caucete	Argentina
CHPI	41609M003	ASHTECH UZ-12	ASH701945C_M	NONE	0.0792	Cachoeira	Brazil
CONZ	41719M002	LEICA GRX1200GGPRO	TPSCR3_GGD	CONE	0.0574	Concepcion	Chile
COPO	41714S001	TRIMBLE NETRS	ASH700936D_M	SNOW	0.0000	Copiapo	Chile
COYQ	41715S001	TRIMBLE NETRS	ASH700936D_M	SNOW	0.0000	Coyhaique	Chile
CRAT	41619M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Crato	Brazil
CRCS	42401M001	SOK GSR2700 RS	TRM29659.00	NONE	0.0160	Caracas	Venezuela
CRO1	43201M001	ASHTECH UZ-12	ASH701945G_M	JPLA	0.0814	Saint Croix	USA
CRUZ	41641M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Cruzeiro do Sul	Brazil
CSLO	41540M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0000	Complejo Astronomico El Leoncito	Argentina
CUEC	42009M001	LEICA GRX1200GGPRO	LEIAT504GG	NONE	0.0080	Cuenca	Ecuador
CUIB	41603M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Cuiaba	Brazil
CUM3	42404M001	SOK GSR2700 RS	NOV533+CR	NOVC	0.1440	Cumana	Venezuela
ESMR	42011M001	TRIMBLE NETRS	TRM41249.00	NONE	1.1840	Esmeraldas	Ecuador
ESQU	41533M001	ASHTECH Z-XII3	TRM41249.00	NONE	0.0000	Esquel	Argentina
GLPS	42005M002	ASHTECH UZ-12	ASH701945B M	SCIT	0.0083	Puerto Ayora	Ecuador
GOJA	41654M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Jatai	Brazil
GVAL	41623M001	ASHTECH UZ-12	ASH700700.B	NONE	0.0500	Gov. Valadares	Brazil
GYEC	42007M001	LEICA GRX1200GGPRO	LEIAT504GG	NONE	0.0080	Guayaquil	Ecuador
IGM1	41505M003	TRIMBLE NETRS	ASH700936D M	SNOW	0.0000	Buenos Aires	Argentina
ILHA	41634M001	LEICA GRX1200GGPRO	LEIAX1202GG	NONE	0.0080	Ilha Solteira	Brazil
IMBT	41638M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Imbituba	Brazil
IMPZ	41615M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Imperatriz	Brazil
IQQE	41708S002	TRIMBLE NETRS	ASH700936D_M	SNOW	0.0000	Iquique	Chile
IQUI	42204M001	LEICA GRX1200GGPRO	LEIAT504GG	LEIS	0.0000	Iquitos	Peru
ISPA	41703M007	ASHTECH UZ-12	ASH701945E_M	SCIT	0.0083	Easter Island	Chile
JBAL	41537M001	TRIMBLE NETRS	TRM41249.00	TZGD	0.0000	Juan Bautista Alberdi	Argentina
KUIID	07201M210	TDC IECNOV	7 CU701046 2	MONTE	0 0450		France
KOUR	97301M210	JPS LEGACY	ASH701946.3	NONE	0.0450	Kourou	France

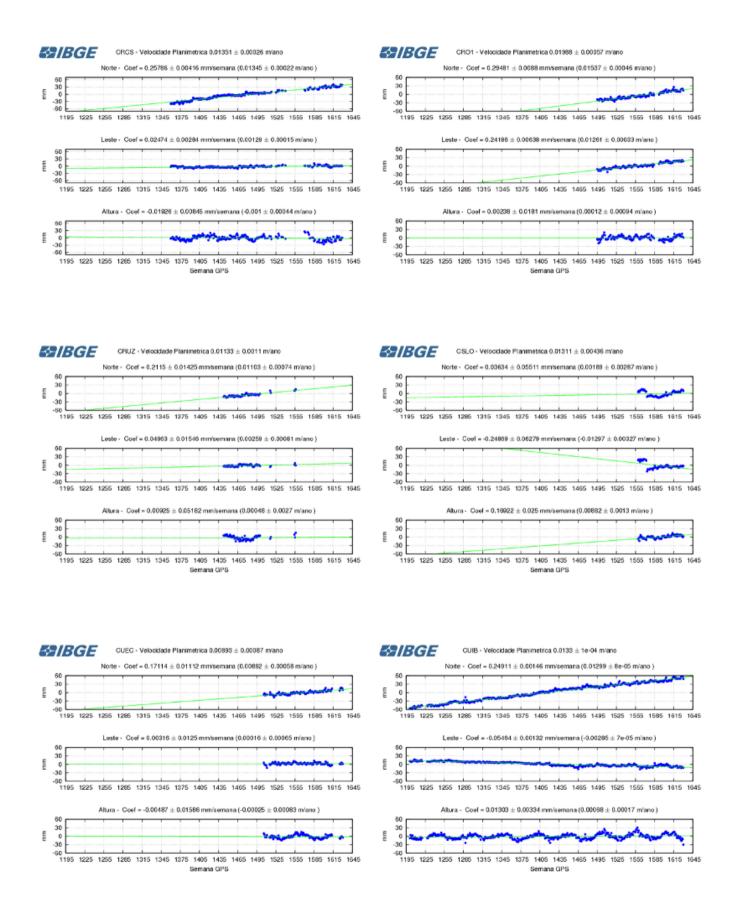

Tabela 01 – Descrição das estações SIRGAS processadas pelo IBGE (continuação)

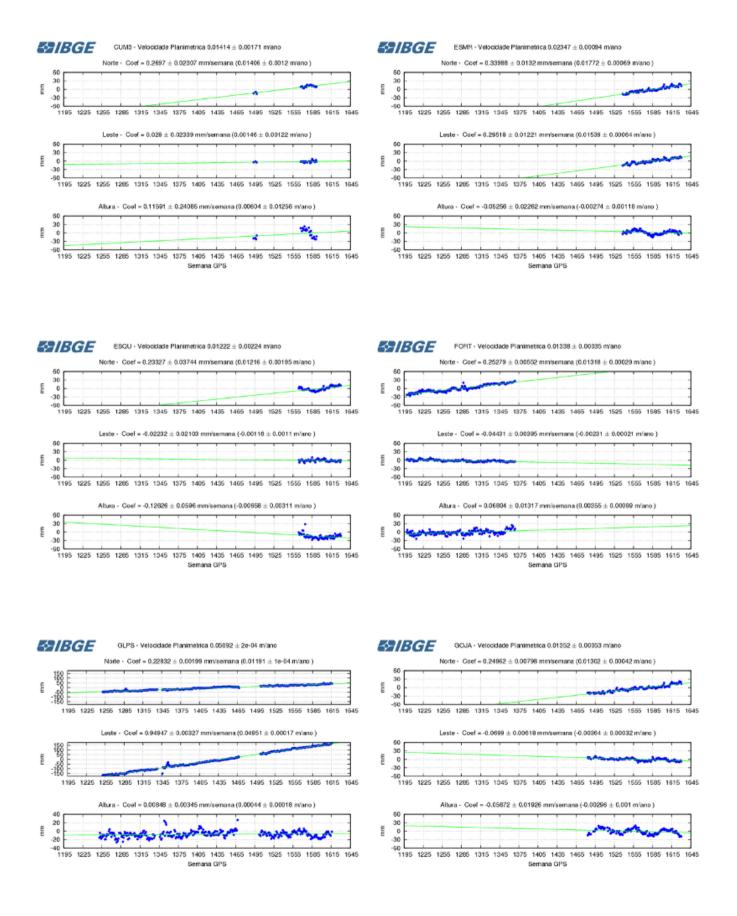

		scrição das estações SIRGAS 1	processadas pelo 16G	E		(C)	ontinuação)
I RST	DOMES	RECEPTOR	ANTENA		ALTURA	CIDADE	PAÍS
	NUMBER		T D T D T F O 4 G G	17017	(m)	.	- I
	42010M001	LEICA GRX1200GGPRO	LEIAT504GG	NONE	0.0080	Loja	Ecuador
	41510M001	AOA BENCHMARK ACT	AOAD/M_T	NONE	0.0460	La Plata	Argentina
	41642M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Maraba	Brazil
	41681M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Balsas	Brazil
	41201S001	TRIMBLE 4000SSI	TRM29659.00	UNAV	0.0000	Managua	Nicaragua
	41629M001	TRIMBLE NETRS	TRM29659.00	NONE	0.0880	Macapa	Brazil
	42402M001	SOK GSR2700 RS	NOV533+CR	NOVC	0.0780	Maracaibo	Venezuela
-	41624M001	ASHTECH UZ-12	ASH700700.B	NONE	0.0600	Montes Claros	Brazil
	41526M001	TRIMBLE NETRS	TRM41249.00	TZGD	0.5350	Mercedes	Argentina
	41667M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0060	Belo Horizonte	Brazil
	41647M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Inconfidentes	Brazil
	41624M002	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Montes Claros	Brazil
	41680M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Rio Paranaíba	Brazil
	41652M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Uberlandia	Brazil
	41626M002	ASHTECH UZ-12	ASH700700.B	NONE	0.1090	Varginha	Brazil
	41649M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Campo Grande	Brazil
	41672M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Dourados	Brazil
	41663M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Barra do Garças	Brazil
MTCO	41670M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Colider	Brazil
MTSF	41655M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	São Felix do Araguaia	Brazil
MZAC	41503M001	ASHTECH Z-XII3	ASH701933C_M	SNOW	0.0000	Mendoza	Argentina
	41530M001	TRIMBLE NETRS	TRM29659.00	UNAV	0.0000	Santa Rosa	Argentina
	41528M001	TRIMBLE NETRS	TRM29659.00	UNAV	0.0000	San Rafael	Argentina
	41614M002	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Manaus	Brazil
	41620M002	TRIMBLE NETR8	TRM59800.00	NONE	0.1003	Cananeia	Brazil
	66008M005	JPS E GGD	TPSCR.G3	TPSH	0.0375	O'Higgins	Antartica
	41635M001	LEICA GRX1200+GNSS	LEIAX1203+GNSS	NONE	0.0080	Rio de Janeiro	Brazil
	41631M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Ourinhos	Brazil
	41683M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Altamira	Brazil
	41685M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Itaituba	Brazil
	66005M002	ASHTECH UZ-12	ASH700936D_M	SCIS	0.0794	Palmer	Antartica
	41716S001	TRIMBLE NETR8	TRM57971.00	NONE	0.0000	Punta Arenas	Chile
	41656M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Campina Grande	Brazil
	41650M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Petrolina	Brazil
	41673M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	São Raimundo Nonato	Brazil
PMB1	43702S001	TRIMBLE NETRS	TRM55971.00	NONE	0.0000	Paramaribo	Surinam
	41616M001	TRIMBLE NETRS	TRM29659.00	NONE	0.0000		Brazil
	41630M001	LEICA GRX1200 PRO	LEIAX1202	NONE	0.0500	Porto Alegre	
	41630M001 41628M001	TRIMBLE NETR5	TRM29659.00	NONE	0.0300	Sao Paulo Porto Velho	Brazil
	41628M001 41611M002	TRIMBLE NETR8	TRM59800.00	NONE	0.0073		Brazil Brazil
	41671M002 41671M001	TRIMBLE NETRS	TRM41249.00		0.0020	Presidente Prudente Guarapuava	
			TRM41249.00	NONE	0.0080	1	Brazil
	41674M001	TRIMBLE NETRS		NONE		Maringá	Brazil
	42008M001	LEICA GRX1200GGPRO	LEIAT504GG ASH700936B_M	NONE	0.0080	Portoviejo	Ecuador
	42003S003 41617M001	ASHTECH Z-XII3 TRIMBLE NETR5	TRM55971.00	SNOW	0.0000	Quito Recife	Ecuador Brazil
	41517M001 41507M006	ASHTECH Z-XII3	ASH700936C_M	SNOW	0.0710	Rio Grande	Argentina
	41645M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Rio Branco	Brazil
	41608M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Rio de Janeiro	Brazil
	42006M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0729	Riobamba	Ecuador
	41657M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Campos dos	Brazil
DNIMO	11664M001	TOTMOT E NETTO	TDMEE071 00	MONTE	0 0000	Goytacazes	Drozi1
	41664M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Mossoro	Brazil
	41668M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Natal	Brazil
	41679M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Colorado d'Oeste	Brazil
	41651M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Guajara-Mirim	Brazil
₩11.11	41658M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Ji-Paraná	Brazil
	1162214001	TOTMOTE METOD	TIDMEE 071 00	דד רידו	0.000	Doggma	D _{morn} :1
ROSA	41632M001 41513M001	TRIMBLE NETR5 ASHTECH UZ-12	TRM55971.00 ASH700936D M	NONE	0.0080	Rosana Rawson	Brazil Argentina

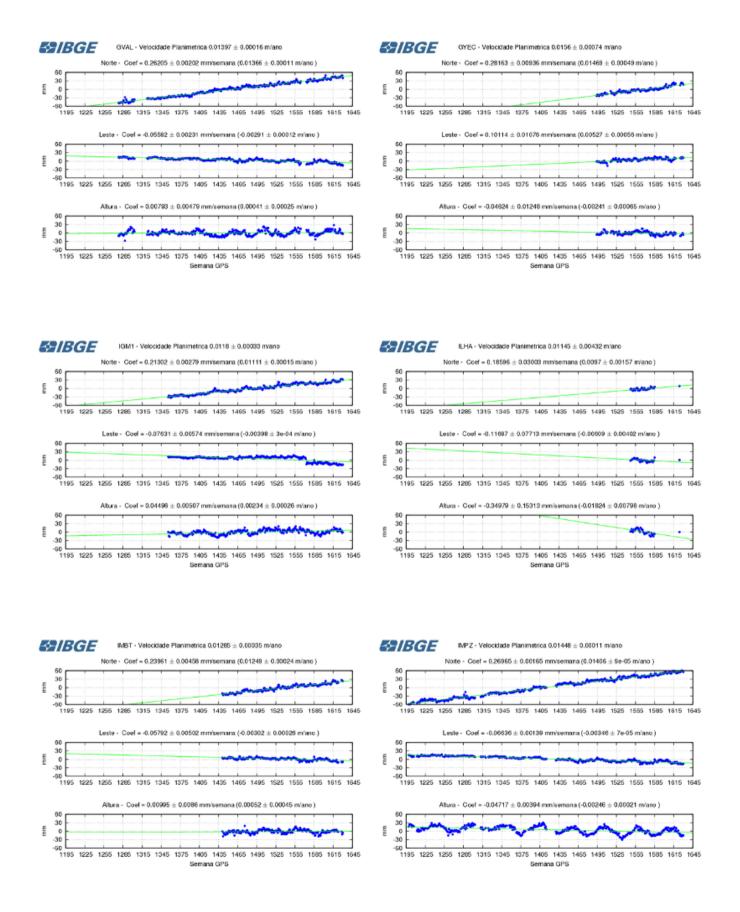

Tabela 01 – Descrição das estações SIRGAS processadas pelo IBGE (conclusão)

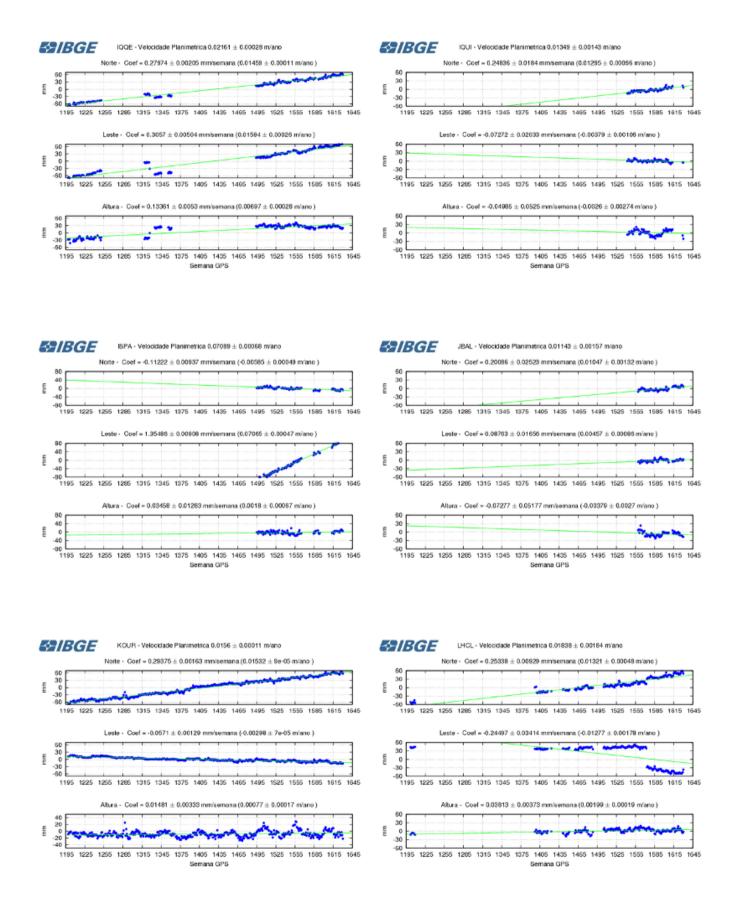

	DOMES	scrição das estações SIRGAS	1	<u> </u>	ALTURA	(conclusão)	
EST	NUMBER	RECEPTOR	ANTENA		(m)	CIDADE	PAÍS
SAGA	41639M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0100	S.G.da Cachoeira	Brazil
SALU	41640M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Sao Luis	Brazil
SALV	41618M001	TRIMBLE 4000SSI	TRM29659.00	NONE	0.1570	Salvador	Brazil
SANT	41705M003	ASHTECH UZ-12	AOAD/M_T	JPLA	0.0614	Santiago de Chile	Chile
SAVO	41643M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0010	Salvador	Brazil
SCCH	41659M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Chapecó	Brazil
SCLA	41660M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0000	Lages	Brazil
SCRZ	41801M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0000	Santa Cruz de la Sierra	Bolivia
SCUB	40701M001	ASHTECH Z-XII3	ASH700936C_M	SNOW	0.0460	Santiago de Cuba	Cuba
SJRP	41633M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Sao Jose do Rio Preto	Brazil
SL01	41543M001	TRIMBLE NETR5	TRM57971.00	TZGD	0.0000	La Punta - San Luis	Argentina
SMAR	41621M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Santa Maria	Brazil
SPAR	41676M001	TRIMBLE NETR8	TRM59800.00	NONE	0.0080	Araçatuba	Brazil
SPCA	41678M001	TRIMBLE NETR8	TRM59800.00	NONE	0.0000	Campinas	Brazil
SRLP	41532M001	NOV MILLEN-STD	AERAT2775_43	NONE	0.0000	Santa Rosa	Argentina
SRNW	43703M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0000	Nieuw Nickerie	Surinam
SRZN	43701S005	TRIMBLE NETRS	TRM41249.00	NONE	0.0000	Paramatibo	Surinam
SSA1	41644M001	TRIMBLE 4000SSI	TRM29659.00	NONE	0.0000	Salvador Capitania	Brazil
SVIC	41536M001	ASHTECH Z-XII3	TRM41249.00	NONE	0.0000	San Vicente	Argentina
TOGU	41661M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Gurupi	Brazil
TOPL	41648M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0080	Palmas	Brazil
TUCU	41520S001	TRIMBLE NETRS	ASH700936C_M	SNOW	0.0000	Tucuman	Argentina
UBA1	41627M002	TRIMBLE NETR8	TRM59800.00	NONE	0.0000	Ubatuba	Brazil
UBER	41625M001	ASHTECH UZ-12	ASH700700.B	NONE	0.0400	Uberlandia	Brazil
UCOR	41502M001	SOKKIA GSR2700 RSX	NOV702GG	NONE	0.0000	Cordoba	Argentina
UFPR	41610M002	TRIMBLE NETR5	TRM55971.00	NONE	0.1000	Curitiba	Brazil
UNSA	41514M001	SEPT POLARX2	TPSCR3_GGD	NONE	0.1300	Salta	Argentina
URUS	41802M001	TRIMBLE NETRS	TRM41249.00	NONE	0.0000	Oruro	Bolivia
UYMO	42301M001	LEICA GRX1200PRO	LEIAT504GG	LEIS	0.0000	Montevideo	Uruguay
VBCA	41626M001	ASHTECH UZ-12	ASH700700.B	NONE	0.0650	Bahia Blanca	Argentina
VESL	66009M001	TPS GB-1000	TRM29659.00	TCWD	-0.0112	Sanae Veslesk.	Antartica
VICO	41613M001	TRIMBLE NETR5	TRM55971.00	NONE	0.0080	Vicosa	Brazil

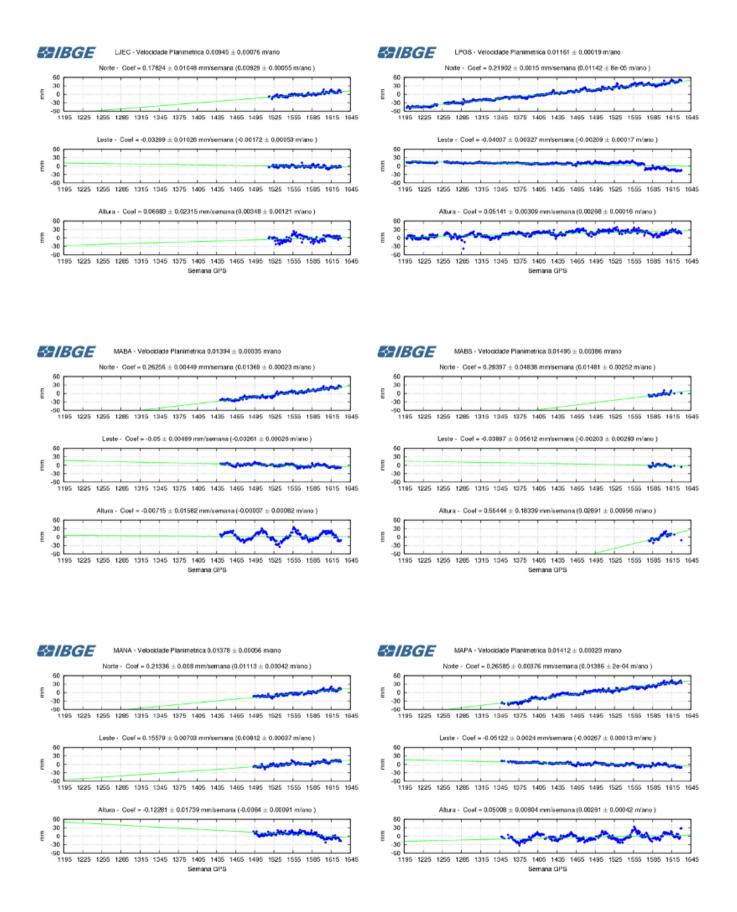

ANEXO 02 - SÉRIE TEMPORAL DAS ESTAÇÕES

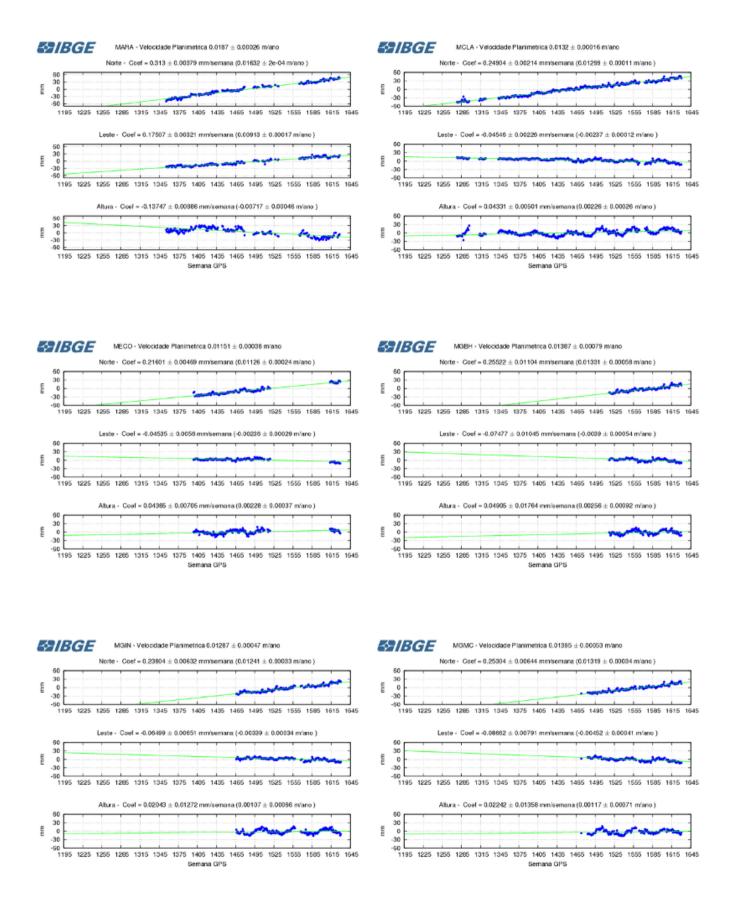


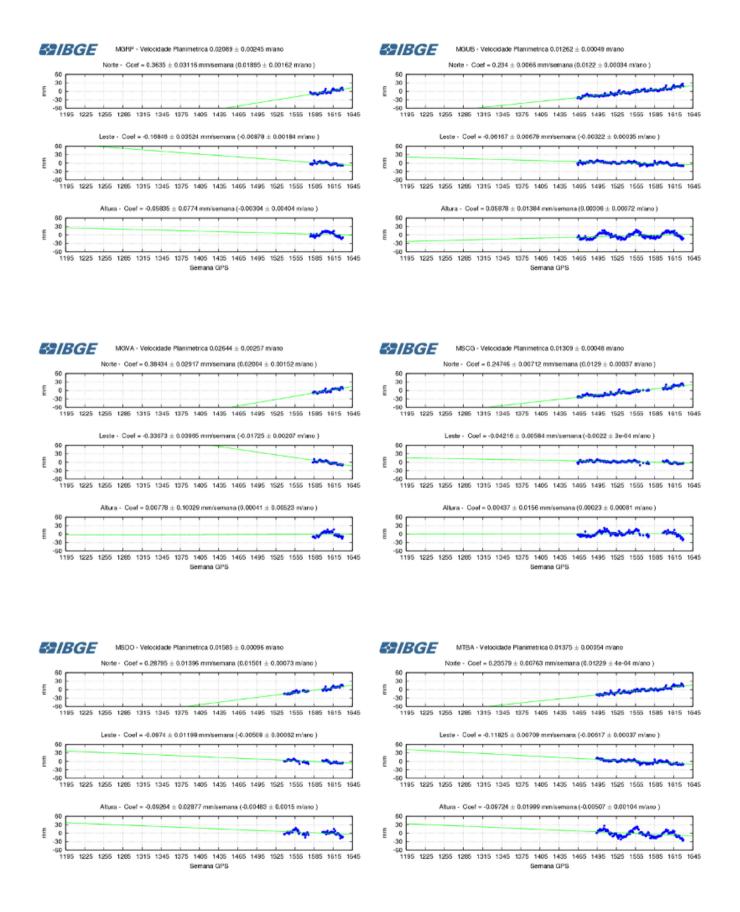


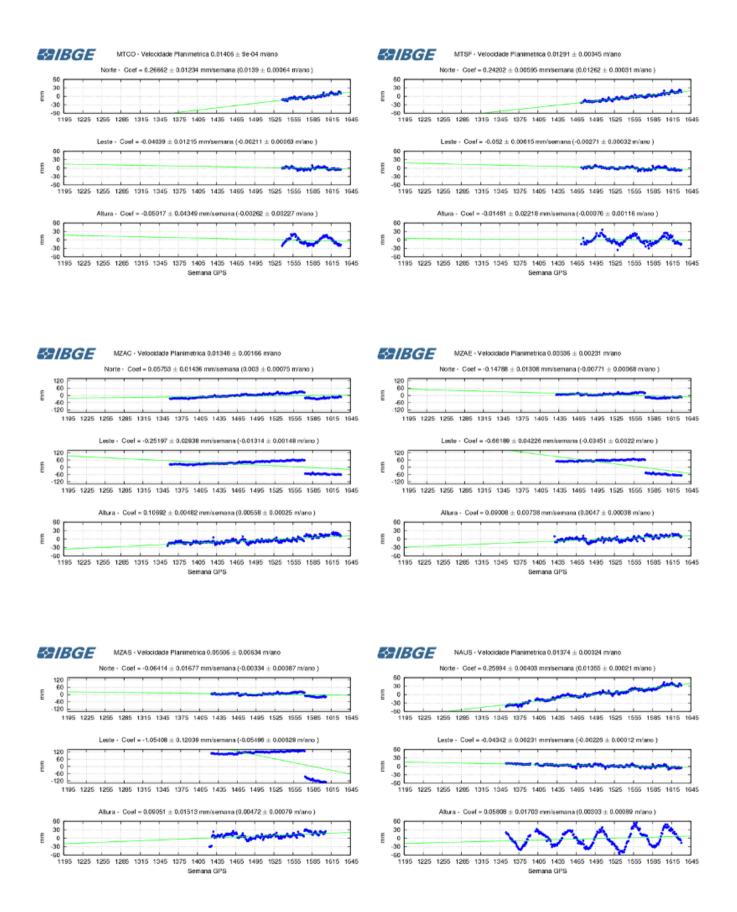


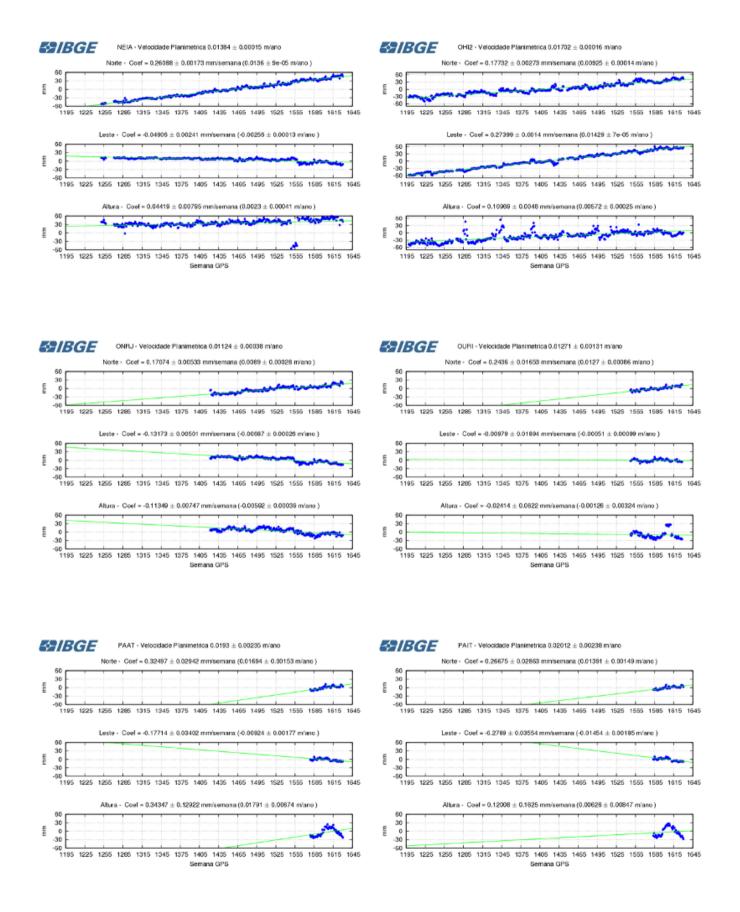


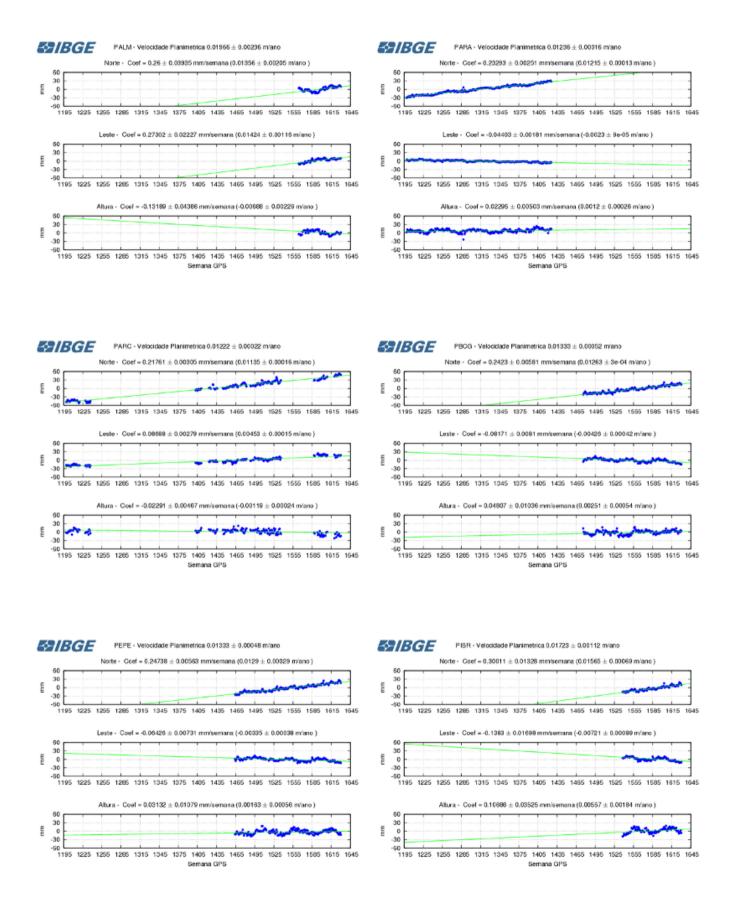


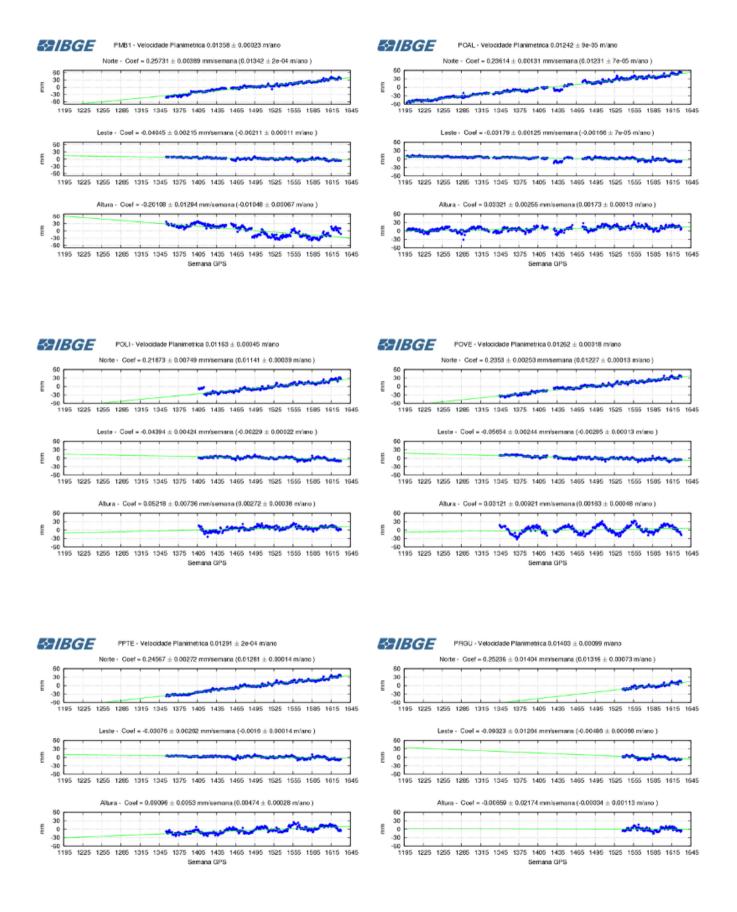


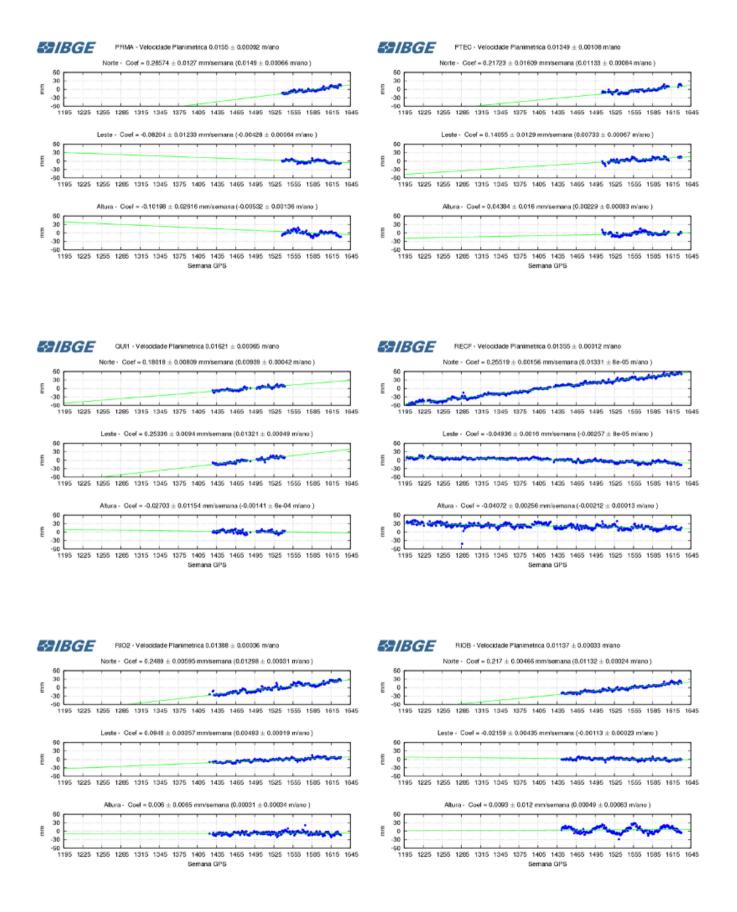


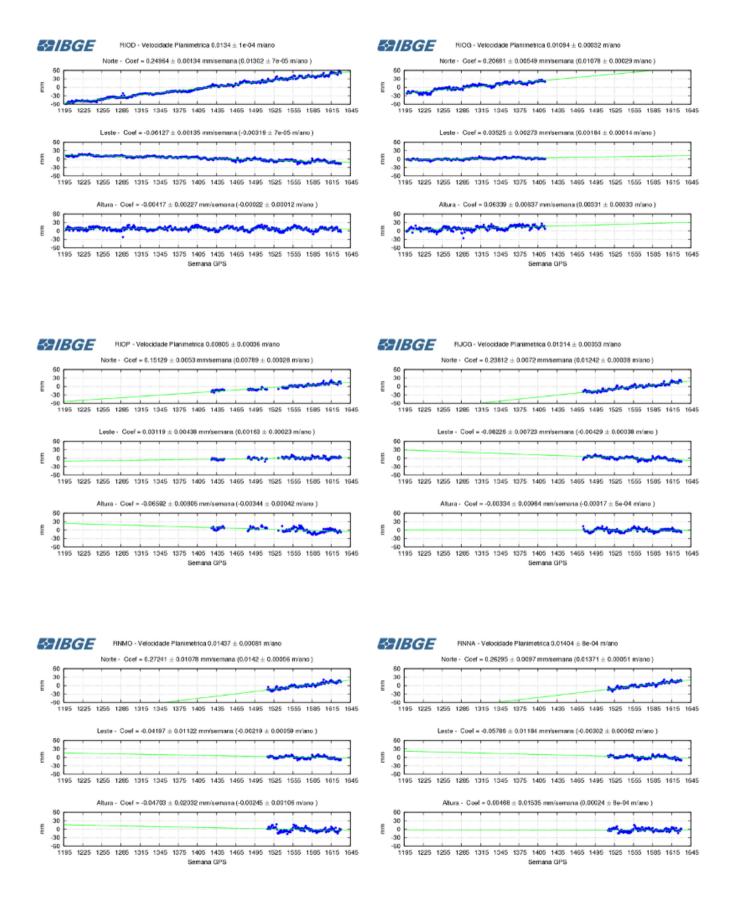


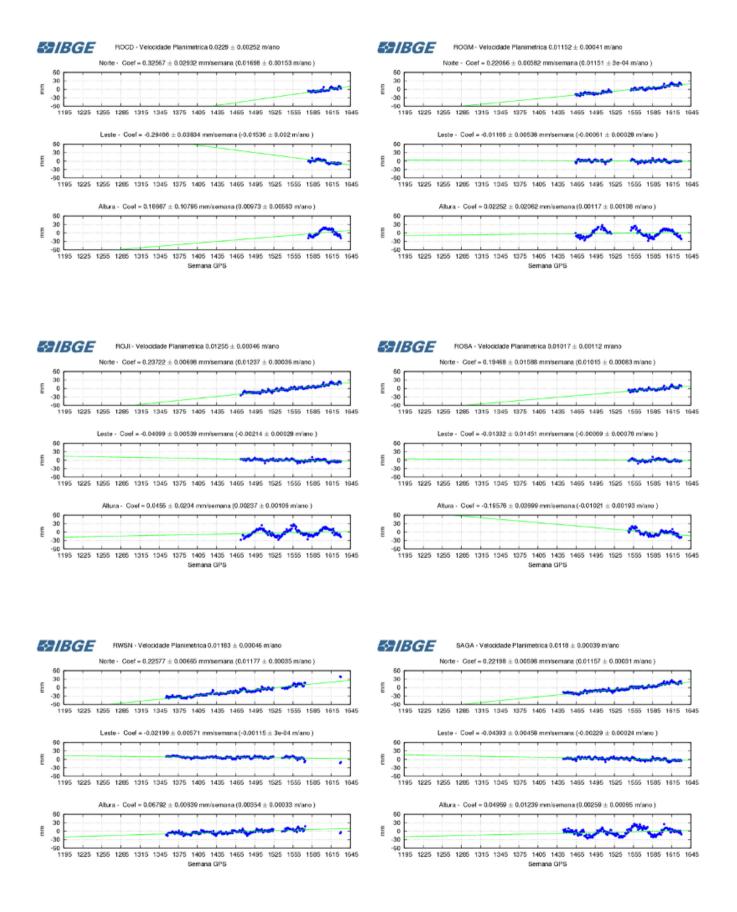


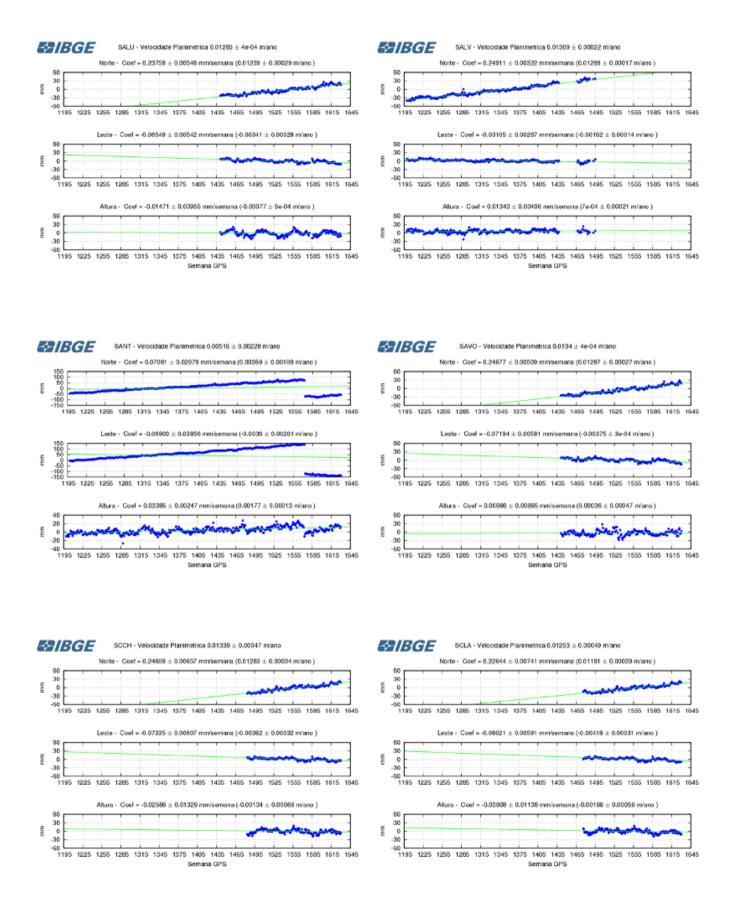


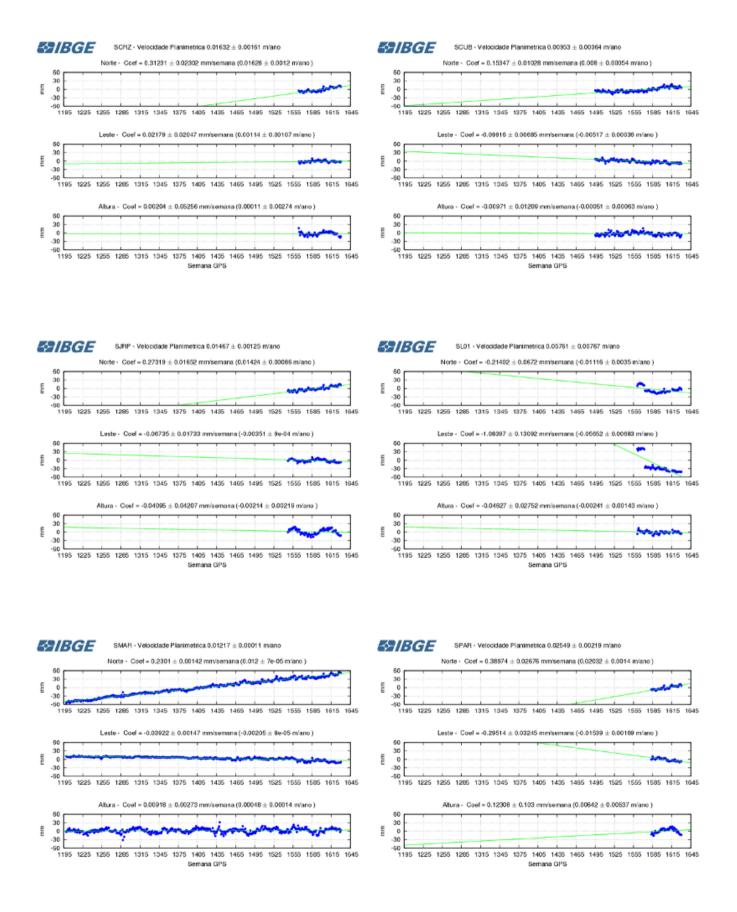


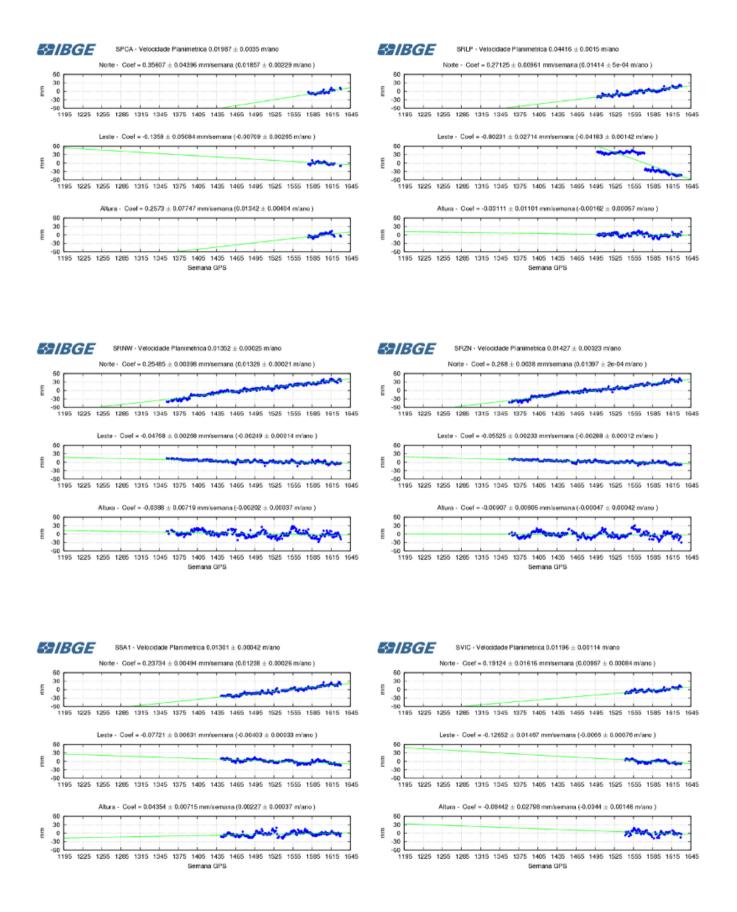


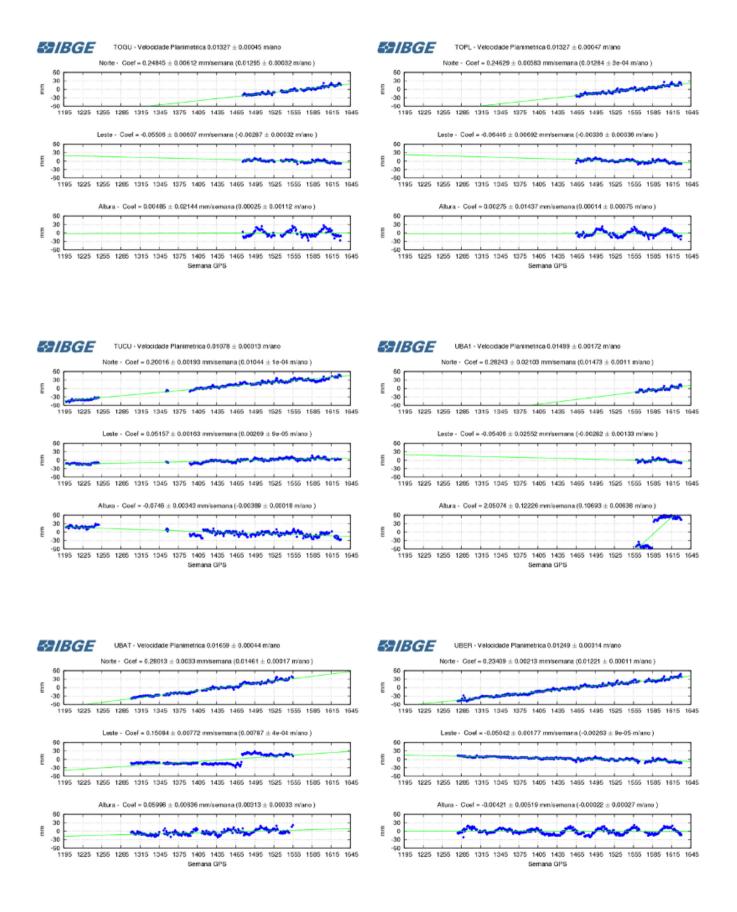


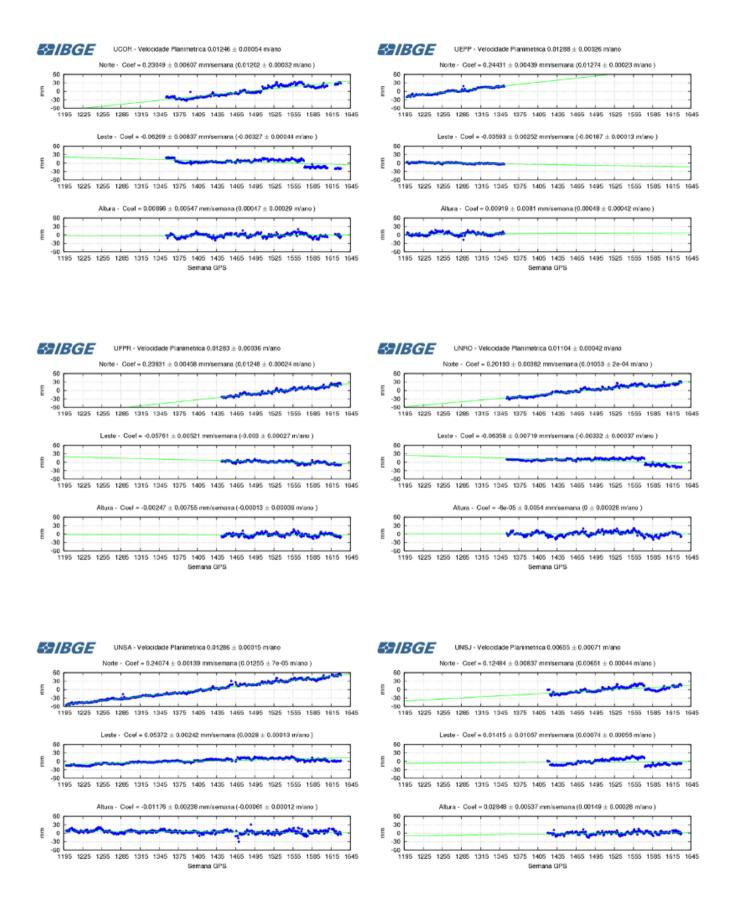


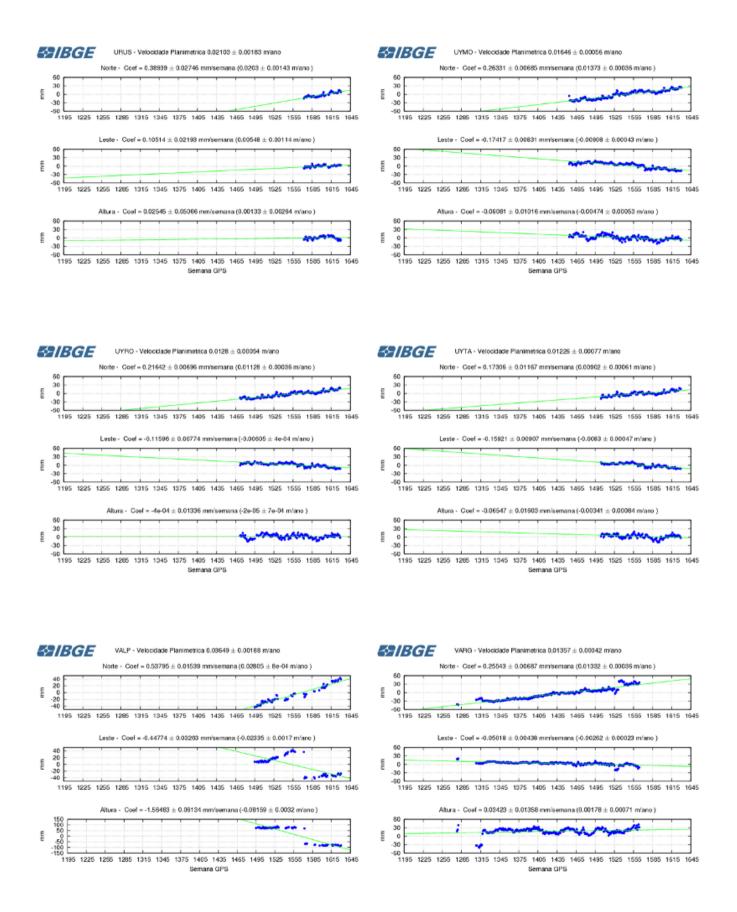


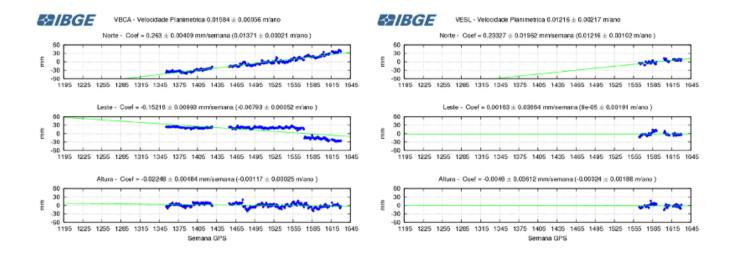


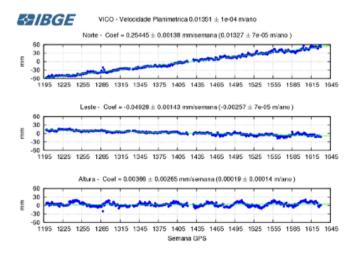












Equipe Técnica

Diretoria de Geociências

Coordenação de Geodésica

Maria Cristina Barboza Lobianco

Técnico Responsável

Alberto Luis da Silva

Marco Aurélio de Almeida Lima

Paulo Roberto Alonso

Sônia Maria Alves Costa

Gerência de Documentação e Informação - GDI

Amauri Silva

Mônica Malaquias de Campos

Programa Editorial

Altagnan Abreu Viana

Ceni Maria de Paula de Souza

Jerônimo Pedro Nogueira Couto

Rubens de Oliveira Theophilo

Copidesque e Revisão

Iaracy Prazeres Gomes

Rosane Tavares Trindade

Centro de Documentação e Disseminação de Informações

Coordenação de Produção

Marise Maria Ferreira

Gráfica Digital

Ednalva Maia do Monte