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Abstract. Stokes´s integral is always carried 
out up to a certain distance from the 
computation point, a limited cap size. The 
consequence of this procedure is the origin of 
the truncation error, which was first studied by 
Molodenskÿ. The recent use of geopotential 
models that take into consideration the remote 
zone contribution in the quasi-geoid estimation 
drove a different philosophy for modifying the 
kernel. Software has been developed at EPUSP 
for the numerical integration of Stokes�s 
integral using the Vanícěk/Kleusberg approach 
for the modified kernel. Recently, Featherstone 
introduced different kernel approaches to the 
1D-FFT software developed at the University 
of Calgary. Different comparisons were carried 
out in the state of São Paulo, Brazil, using the 
different options of 1D-FFT software provided 
by Featherstone and the EPUSP software. The 
results are presented and analysed. 
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1 Introduction 
 
In the late 1950�s Molodenskÿ developed the 
idea to minimize the truncation error on the 
geoid height due to the limitation of Stokes�s 
integral to a cap size ψo. His approach yielded 
to the so- called Molodenskÿ coefficients Qn 
computed as a function of the Legendre 
polynomials as: [Molodenskÿ et al., 1962] 
 
 ψψψψψ

π

ψ
dsinPSQ nOn

o

)(cos)()( ∫=        (1) 

where S(ψ) is the Stokes´s function and  ψ the 

spherical distance. 
 More recently, with the possibility of using 
global geopotential models, new attention was 
paid  to the modification of the Stoke�s kernel. 
In fact, the original reason of the truncation 
error was due to the negligence of the long-
wavelength influence of the distant zone 
(beyond ψo) on the geoid estimation. This can 
easily be dealt with using geopotential models. 
The lower order coefficients of the model 
provide the long- wavelength component of the 
geoid, which is much of the influence of the 
distant zone. Due to this fact, a new reason 
exists to modify the Stokes�s kernel explain.  
 
2 Different kernel modification 
 
The geoid height can be split into two 
components, e.g., [Blitzkow, 1986]: 
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or in a short form: 
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 The first term Ns(θ,λ) can easily be 
computed with a geopotential model, e.g., 
EGM96. The short-wavelength compo-nent  
δN(θ, λ) is estimated from some local gravity 
anomalies reduced by the geopotential model 
and using a modified Stokes´s kernel through 
the following equation: 
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where )(ψSM  is the modified kernel. 
 Different ideas have been developed since 
the simple approach presented by Wong and 
Gore (1969), which involves removing the low-
degree terms from the kernel, according to: 
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 for (0 < ψ ≤ ψo)                                         (5) 
 
 Equation (5) is also known as spheroidal 
Stokes´s kernel. (Vanicĕk and Sjöberg, 1991). 
 Another idea came from Meissl, (1971) who 
simply subtracts the value of Stokes�s kernel at 
the truncation distance ψo from the kernel 
itself. Thus, Meissl kernel reads: 
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 for (0 < ψ ≤ ψo)                                         (6) 
 
 An approach that addressed a better 
modification of the kernel is the so called 
Molodenskÿ-modified spherical kernel which 
is described in Vaníček and Kleusberg (1987),  
Blitzkow (1996) and revised by [Vaníček and 
Featherstone, 1998).  The formula is: 
 
 ∑

+−=
=

s

2
)()(

2
12)()(

k
kok

WGVK Pt
kSS ψψψψ          (7) 

 
which is dependent on the tk(ψo) coefficients to 
be determined and SWG(ψ) is given by Eq. (5). 
The following system of linear equations 
provides the necessary tool for the application 
of the least squares principle for the estimation 
of the coefficients tk( ψo): 
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where: 
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which can be computed through the integral by 
some algorithm, (e.g., Paul, 1973). The last 
term of Eq.(8) can also be presented as the 
integral: 
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Equation (8) has the form : 
 XAL =                                                   (11) 
 
L  and X  being the following vectors:  
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 Featherstone et al., (1998) proposed a hybrid 
modification combining the Vaníček and 
Kleusberg kernel with Meissl�s idea. The basic 
equation is: 
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 The limit of integration is loosely 
dependent of the maximum degree and order 
that is selected for the geopotential model. As 
an example, if  s = 60, ψo will be 3o and a total 
of 59 tk coefficients have to be estimated if the 
Stokes´s integral is applied to a properly 
scaled gravity model in a geocentric 
coordinate system. Software called 
STKMOD.FOR is available, if requested, from 
the authors for the computation of the 
coefficients. It was originally developed at the, 
University of New Brunswick, and modified at 
EPUSP in 1996 and in 2002. 
 
3 Geoid computation softwares 
 
The alternative of kernel modification 
represented by Eq. (7) is implemented since 
1990 in the sofware STKMOD.FOR as 
mentioned. On the other hand, Featherstone 
and Sideris, (1997), described the 



 

 

modifications introduced in the 1D-FFT 
software developed at the University of 
Calgary, in order to implement Eqs. (5), (6) 
and (13). A copy of the new version of the 
software was provided by W. E. Featherstone, 
Curtin University of Technology, and set up at 
a Sun workstation at EPUSP. 
 A set of mean Helmert gravity anomalies in 
an area limited by 9º S and 36º S of latitude 
and 64º W and 34º W of longitude were used 
for the computations of this paper, and the 
results are limited to an area internal to that 
block, with 5º difference for each limit to 
avoid edge effects. Four different 
computations were carried out, three with 1D-
FFT software  and a fourth one with 
STOKESMOD.FOR, developed at EPUSP. 
The results are described in the next 
paragraphs. 
 The remove-restore technique was used for 
the computations taking EGM96 up to degree 
and order 50 as the reference field.  In this 
way, the limit of integration selected was ψo = 
4o. The reference field has been removed from 
10´ mean Helmert anomalies derived from 
point anomalies. The 10´ mean anomalies are 
on a grid with 162 rows and 180 columns.  A 
set of 89 GPS leveled  points were also used 
for comparisons.  
 The RMS differences have been computed 
according to: 
 
 ES NNN −=∆                                      (14) 
 
where NS and NE are geoid heights derived 
from GPS and Stokes´s integral respectively. 
 
and 
 

 
( )
( )1

2

−
∆Σ=∆ nn

N
Nσ                              (15) 

 
4 Results 
 
The following experiments were carried out 
using the numerical integration of Stokes 
integral and 1D-FFT. The first one will be 

mentioned from now on as experiment 1 (DB-
VK); 1D-FFT has three possibilities: 
Vaniček/Kleusberg as experiment 2 (FFT-
VK), Wong-Gore as experiment 3 (FFT-WG) 
and Featherstone et al (1998) as experiment 4 
(FFT-FEO). Tables 1 and 2 show the results in 
terms of RMS difference, mean difference and 
maximum and minimum values. Figures 1 to 6 
present the histograms accordingly. 
 As it is shown in Figure 1, the approaches 
of experiments 2 and 4 are similar. This is also 
shown by the second row of Table 1.  
Experiment 3 differs from both as it can be 
seen from the RMS difference, rows 3 and 4 of 
Table 1, and Figures 2 and 3. In any case, the 
difference is smaller than 1 m. Experiment 1 
has a desagreement with all the others, but the 
desagreement is worse with experiment 3 (see 
Table 2, second column). In any case the 
differences are on the order of sub-meter. 
 
Table 1 Differences of the comparisons 
related to experiments with FFT. 
 

Experiments RMS 
(m) 

Mean 
(m) 

Maximun 
(m) 

Mínimum 
(m) 

FFT-FEO and 
FFT-VK 0.01 0.01 0.02 -0.01 

FFT-WG and 
FFT-VK 0.32 0.24 0.86 -0.19 

FFT-FEO and 
FFT-WG 0.32 0.24 0.84 -019 
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Fig. 1 Differences distribution between FFT-
VK and FFT-FV 
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Fig. 2 Differences distribution between FFT-
WG and FFT-VK 
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Fig. 3 Differences distribution between FFT-
FV and FFT-WG 
 
Table 2. Differences distribution between DB-
VK and FFT 

 
 Table 2 shows that the experiment DB-VK 
gives the same RMS difference with FFT-VK 
and FFT-FEO which is a confirmation of the 
fact that the last two modification techniques 
are similar. The mean difference (third column 
of the Table 2) also shows that virtually no 
systematic difference exists between them. 
Again, the comparison related to FFT-WG 
present a RMS difference slightly greater with 
some systematic effect. The fact that the 

numerical integration (DB-VK) is quite 
different from FFT is not explained at the 
moment. Further investigation must be carried 
out on the issue. 
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Fig. 4 Differences distribution between DB-
VK and FFT-FEO 
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Fig. 5 Differences distribution between DB-
VK e FFT-VK 
 

Experiment RMS diff. 
(m) 

Mean of 
the diff. 

(m) 

Maximum 
value (m) 

Minimum 
value (m) 

DB-VK and  
FFT-VK 0.54 -0.01 1.88 -1.52 

DB-VK and  
FFT-FEO 0.54 -0.01 1.88 -1.52 

DB-VK and  
FFT-WG 0.63 0.23 1.69 -1.93 
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Fig. 6 Differences distribution between DB-
VK e FFT-WG 
 
 Another alternative used for the evaluation 
was a set of 89 GPS leveled points. The results 
are presented in the Table 3, and Figures 7 to 
10 show the distribution of the differences. 
 
Table 3. Summary of the comparisons carried 
out with GPS points. 
 

 
 Looking at Table 3, it can be seen that the 
experiment FFT-WG resulted in the smaller 
RMS difference (0.62 m) and also in the 
smaller systematic effect with respect to the 
others. The histograms also show a rear- 
random distribution.  
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Fig. 7 Differences distribution between DB-
VK and GPS points. 
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Fig. 8 Differences distribution between  FFT-
VK and GPS points. 
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Fig. 9 Differences distribution between  FFT-
FEO and GPS points. 

Experiment RMS 
(m) 

Mean 
(m) 

Maximu
m (m) 

Minimum 
(m) 

DB-VK 0.70 -0.49 1.33 -1.65 

FFT-VK 0.78 -0.74 -0.04 -1.57 

FFT-FEO 0.77 -0.74 -0.04 -1.56 
FFT-WG 0.62 -0.46 0.29 -1.47 



 

 

1 0

13
9 7 9

17

26

6
1

0

10

20

30

40
Meter
-1.6 a -1.4
-1.4 a -1.2
-1.2 a 1.0 
-1.0 a -0.8
-0.8 a -0.6
-0.6 a -0.4 
-0.4 a -0.2
-0.2 a 0.0
0.0 a 0.2
0.2 a 0.4

Fig. 10 Differences distribution between  FFT-
WG and GPS points. 
 
5 Conclusions 
 
Based on the results obtained and the analysis 
carried out, the following conclusions can be 
reached:  
 
a) The results derived from the modifications 
Vaníček-Kleusberg (FFT-VK) and 
Featherstone et al (1998) (FFT-FEO) 
demonstrated to be very similar. This was 
expected because the modifications follow a 
similar principle. 
b) The experiments FFT-VK and DB-VK 
would have to produce similar results because 
they are based on the same technique of 
modification. The only difference are the 
integration algorithm. Nevertheless, the results 
are very different and there are no 
explanations for that at the moment. The 
problem must be investigated more carefully. 
c) The fact that the Wong-Gore modification 
showed a better agreement with the GPS 
points is somewhat surprising. According to 
Featherstone et al. (1998), the modification 
FFT-FEO is the one that should produce the 
smaller truncation error. In this case, it is the 
one that had to have a better agreement with 
the GPS points. It is well known that the GPS 
observations are very accurate. The leveling 
network in Brazil is very extensive with the 
origin in a tide gauge very far from the 
computation area. At the moment it is not easy 
to predict the error in the height. On the other 

hand, errors in the gravity anomalies or a non-
homogeneous distribution can also contribute 
to the differences. So, the GPS points have to 
be used just to show a tendency, not as an 
absolute comparison. 
d) Due to theoretical reasons a model of the 
geoid in the  studied area has been derived 
from FFT-FV. The area is limited by latitudes 
of 190 and  260 S and by longitudes of 540 and 
440 W. The model has an RMS difference of 
0.78 m when compared with the GPS and a 
relative accuracy of 0.4 cm/km or 4 PPM, 
estimated from 15 pairs of points. 
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